CHAPTER 13

Discrete Probability Distributions and Simulation

Objectives

- To demonstrate the basic ideas of discrete random variables.
- To introduce the concept of a probability distribution for a discrete random variable.
- To introduce and investigate applications of the binomial probability distribution.
- To show that simulation can be used to provide estimates of probability which are close to exact solutions.
- To use simulation techniques to provide solutions to probability problems where an exact solution is too difficult to determine.
- To use coins and dice as simulation models.
- To introduce and use random number tables.

13.1 Discrete random variables

In Chapter 10 the notion of the probability of an event occurring was explored, where an event was defined as any subset of a sample space. Sample spaces which were not sets of numbers were frequently encountered. For example, when a coin is tossed three times the sample space is:

\[\varepsilon = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\} \]

If it is only the number of heads that is of interest, however, a simpler sample space could be used whose outcomes are numbers. Let \(X \) represent the number of heads in the three tosses of the coin, then the possible values of \(X \) are 0, 1, 2, and 3. Since the actual value that \(X \) will take is the outcome of a random experiment, \(X \) is called a random variable. Mathematically a random variable is a function that assigns a number to each outcome in the sample space \(\varepsilon \).
A random variable X is said to be **discrete** if it can assume only a countable number of values. For example, suppose two balls are selected at random from a jar containing several white (W) and black balls (B). A random variable X is defined as the number of white balls obtained in the sample. Thus X is a discrete random variable which may take one of the values 0, 1, or 2. The sample space of the experiment is:

\[S = \{WW, WB, BW, BB\} \]

Each outcome in the sample space corresponds to a value of X, and vice-versa.

<table>
<thead>
<tr>
<th>Experimental outcome</th>
<th>Value of X</th>
</tr>
</thead>
<tbody>
<tr>
<td>WW</td>
<td>$X = 2$</td>
</tr>
<tr>
<td>BW</td>
<td>$X = 1$</td>
</tr>
<tr>
<td>WB</td>
<td>$X = 1$</td>
</tr>
<tr>
<td>BB</td>
<td>$X = 0$</td>
</tr>
</tbody>
</table>

Many events can be associated with a given experiment. Some examples are:

<table>
<thead>
<tr>
<th>Event</th>
<th>Sample outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>One white ball: $X = 1$</td>
<td>${WB, BW}$</td>
</tr>
<tr>
<td>At least one white ball: $X \geq 1$</td>
<td>${WW, WB, BW}$</td>
</tr>
<tr>
<td>No white balls: $X = 0$</td>
<td>${BB}$</td>
</tr>
</tbody>
</table>

A **probability distribution** can be thought of as the theoretical description of a random experiment. Consider tossing a die 600 times – we might obtain the following results:

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>98</td>
<td>104</td>
<td>93</td>
<td>97</td>
<td>108</td>
<td>100</td>
</tr>
<tr>
<td>Experimental probability</td>
<td>98/600</td>
<td>104/600</td>
<td>93/600</td>
<td>97/600</td>
<td>108/600</td>
<td>100/600</td>
</tr>
</tbody>
</table>

Theoretically, the frequencies will be equal, regardless of the number of trials (provided they are sufficiently large). This can most easily be expressed by giving probabilities – for instance, let X be ‘the outcome of tossing a die’. The table gives the **probability distribution** of X.

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical frequency</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>$\Pr(X = x)$</td>
<td>$\frac{1}{6}$</td>
<td>$\frac{1}{6}$</td>
<td>$\frac{1}{6}$</td>
<td>$\frac{1}{6}$</td>
<td>$\frac{1}{6}$</td>
<td>$\frac{1}{6}$</td>
</tr>
</tbody>
</table>
Chapter 13 — Discrete Probability Distributions and Simulation

The probability distribution of \(X, p(x) = \Pr(X = x) \) is a function that assigns probabilities to each value of \(X \). It can be represented by a rule, a table or a graph, and must give a probability \(p(x) \) for every value \(x \) that \(X \) can take. For any discrete probability function the following must be true:

1. The minimum possible value of \(p(x) \) is zero, and the maximum possible value of \(p(x) \) is 1. That is:
 \[
 0 \leq p(x) \leq 1
 \]
 for every value \(x \) that \(X \) can take.

2. All values of \(p(x) \) in every probability distribution must sum to exactly 1.

 To determine the probability that \(X \) lies in an interval, we add together the probabilities that \(X \) takes all values included in that interval, as shown in the following example.

Example 1

Consider the function:

<table>
<thead>
<tr>
<th>(x)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Pr(X = x))</td>
<td>(2c)</td>
<td>(3c)</td>
<td>(4c)</td>
<td>(5c)</td>
<td>(6c)</td>
</tr>
</tbody>
</table>

a. For what value of \(c \) is this a probability distribution?

b. Find \(\Pr(3 \leq X \leq 5) \).

Solution

a. To be a probability distribution we require

\[
2c + 3c + 4c + 5c + 6c = 1
\]

\[
20c = 1
\]

\[
c = \frac{1}{20}
\]

b. \(\Pr(3 \leq X \leq 5) = \Pr(X = 3) + \Pr(X = 4) + \Pr(X = 5) \)

\[
= \frac{4}{20} + \frac{5}{20} + \frac{6}{20}
\]

\[
= \frac{15}{20} = \frac{3}{4}
\]

Example 2

The table shows a probability distribution with random variable \(X \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Pr(X = x))</td>
<td>0.2</td>
<td>0.2</td>
<td>0.07</td>
<td>0.17</td>
<td>0.13</td>
<td>0.23</td>
</tr>
</tbody>
</table>
Give the following probabilities:

a $\Pr(X > 4) \\
b \Pr(2 < X < 5) \\
c \Pr(X \geq 5 | X \geq 3)$

Solution

a $\Pr(X > 4) = \Pr(X = 5) + \Pr(X = 6) = 0.13 + 0.23 = 0.36$

b $\Pr(2 < X < 5) = \Pr(X = 3) + \Pr(X = 4) = 0.07 + 0.17 = 0.24$

c $\Pr(X \geq 5 | X \geq 3) = \frac{\Pr(X \geq 5)}{\Pr(X \geq 3)}$ (as $X \geq 5$ and $X \geq 3$ implies $X \geq 5$)

$$= \frac{\Pr(X = 5) + \Pr(X = 6)}{\Pr(X = 3) + \Pr(X = 4) + \Pr(X = 5) + \Pr(X = 6)}$$

$$= \frac{0.13 + 0.23}{0.07 + 0.17 + 0.13 + 0.23} = \frac{0.36}{0.6}$$

$$= \frac{3}{5}$$

Example 3

The following distribution table gives the probabilities for the number of people on a carnival ride at a particular time of day.

<table>
<thead>
<tr>
<th>No. of people (t)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Pr(T = t)$</td>
<td>0.05</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Find:

a $\Pr(T > 4) \\
b \Pr(1 < T < 5) \\
c \Pr(T < 3 | T < 4)$

Solution

a $\Pr(T > 4) = \Pr(T = 5) = 0.15$

b $\Pr(1 < T < 5) = \Pr(T = 2) + \Pr(T = 3) + \Pr(T = 4) = 0.6$

c $\Pr(T < 3 | T < 4) = \frac{\Pr(T < 3)}{\Pr(T < 4)}$

$$= \frac{0.55}{0.75}$$

$$= \frac{11}{15}$$

Exercise 13A

1 A random variable X can take the values $x = 1, 2, 3, 4$. Indicate whether or not each of the following is a probability function for such a variable, and if not, give reasons:

a $p(1) = 0.05 \quad p(2) = 0.35 \quad p(3) = 0.55 \quad p(4) = 0.15$

b $p(1) = 0.125 \quad p(2) = 0.5 \quad p(3) = 0.25 \quad p(4) = 0.0625$
Chapter 13 — Discrete Probability Distributions and Simulation

2 For each of the following write a probability statement in terms of the discrete random variable \(X \) showing the probability that:

- \(a \) \(X \) is equal to 2
- \(b \) \(X \) is greater than 2
- \(c \) \(X \) is at least 2
- \(d \) \(X \) is less than 2
- \(e \) \(X \) is 2 or more
- \(f \) \(X \) is more than 2
- \(g \) \(X \) is no more than 2
- \(h \) \(X \) is greater than or equal to 2
- \(i \) \(X \) is less than or equal to 2
- \(j \) \(X \) is no less than 2
- \(k \) \(X \) is greater than 2 and less than 5

3 A random variable \(X \) can take the values 0, 1, 2, 3, 4, 5. List the set of values that \(X \) can take for each of the following probability statements:

- \(a \) \(\Pr(X = 2) \)
- \(b \) \(\Pr(X > 2) \)
- \(c \) \(\Pr(X \geq 2) \)
- \(d \) \(\Pr(X < 2) \)
- \(e \) \(\Pr(X \leq 2) \)
- \(f \) \(\Pr(2 \leq X \leq 5) \)
- \(g \) \(\Pr(2 < X \leq 5) \)
- \(h \) \(\Pr(2 \leq X < 5) \)
- \(i \) \(\Pr(2 < X < 5) \)

Example 1

Consider the following function:

<table>
<thead>
<tr>
<th>(x)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Pr(X = x))</td>
<td>(k)</td>
<td>(2k)</td>
<td>(3k)</td>
<td>(4k)</td>
<td>(5k)</td>
</tr>
</tbody>
</table>

- \(a \) For what value of \(k \) is this a probability distribution?
- \(b \) Find \(\Pr(2 \leq X \leq 4) \).

5 The number of ‘no-shows’ on a scheduled airline flight has the following probability distribution:

<table>
<thead>
<tr>
<th>(r)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p(r))</td>
<td>0.09</td>
<td>0.22</td>
<td>0.26</td>
<td>0.21</td>
<td>0.13</td>
<td>0.06</td>
<td>0.02</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Find the probability that:

- \(a \) more than four people do not show up for the flight
- \(b \) at least two people do not show up for the flight.

6 Suppose \(Y \) is a random variable with the distribution given in the table.

<table>
<thead>
<tr>
<th>(y)</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Pr(Y = y))</td>
<td>0.08</td>
<td>0.13</td>
<td>0.09</td>
<td>0.19</td>
<td>0.20</td>
<td>0.03</td>
<td>0.10</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Find:

- \(a \) \(\Pr(Y \leq 0.50) \)
- \(b \) \(\Pr(Y > 0.50) \)
- \(c \) \(\Pr(0.30 \leq Y \leq 0.80) \)
The table shows a probability distribution with random variable X.

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr($X = x$)</td>
<td>0.1</td>
<td>0.13</td>
<td>0.17</td>
<td>0.27</td>
<td>0.20</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Give the following probabilities:

a) Pr($X > 3$)

b) Pr($3 < X < 6$)

c) Pr($X \geq 4 | X \geq 2$)

8 Suppose that a fair coin is tossed three times.

a) List the eight equally likely outcomes.

b) If X represents the number of heads shown, determine Pr($X = 2$).

c) Find the probability distribution of the random variable X.

d) Find Pr($X \leq 2$).

e) Find Pr($X \leq 1 | X \leq 2$).

9 When a pair of dice is rolled, 36 equally likely outcomes are possible. Let Y denote the sum of the dice.

a) What are the possible values of the random variable Y?

b) Find Pr($Y = 7$).

c) Determine the probability distribution of the random variable Y.

10 When a pair of dice is rolled, 36 equally likely outcomes are possible. Let X denote the larger of the values showing on the dice. If both dice come up the same, then X denotes the common value.

a) What are the possible values of the random variable X?

b) Find Pr($X = 4$).

c) Determine the probability distribution of the random variable X.

11 A dart is thrown at a circular board with a radius of 10 cm. The board has three rings: a bullseye of radius 3 cm, a second ring with an outer radius of 7 cm, and a third ring with outer radius 10 cm. Assume that the probability of the dart hitting a region R is given by

$$Pr(R) = \frac{\text{area of } R}{\text{area of dartboard}}$$

a) Find the probability of scoring a bullseye.

b) Find the probability of hitting the middle ring.

c) Find the probability of hitting the outer ring.

12 Suppose that a fair coin is tossed three times. You lose $3.00 if three heads appear and $2.00 if two heads appear. You win $1.00 if one head appears and $3.00 if no heads appear; Y is the amount you win or lose.

a) Find the probability distribution of the random variable Y.

b) Find Pr($Y \leq 1$).
Chapter 13 — Discrete Probability Distributions and Simulation

13.2 Sampling without replacement

Consider the sort of probability distribution that arises from the most common sampling situation.

A jar contains three mints and four toffees, and Bob selects two (without looking). If the random variable of interest is the number of mints he selects, then this can take values of 0, 1 or 2. Suppose this was done experimentally many times (say 50). The following results may be obtained:

<table>
<thead>
<tr>
<th>Number of mints</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of times observed</td>
<td>18</td>
<td>24</td>
<td>8</td>
</tr>
</tbody>
</table>

Let X be the number of mints Bob selects. From the table, the probabilities can be estimated for each outcome as:

\[
\Pr(X = 0) \approx \frac{18}{50} = 0.36
\]

\[
\Pr(X = 1) \approx \frac{24}{50} = 0.48
\]

\[
\Pr(X = 2) \approx \frac{8}{50} = 0.16
\]

Obviously, it is not desirable that an experiment needs to be carried out every time a situation like this arises and it is not necessary. It is possible to work out the theoretical probability for each value of the random variable by using the knowledge of combinations from Chapter 12.

Consider the situation in which the sample of two sweets contains no mints. Then it must contain two toffees. Thus Bob has selected no mints from the three available, and two toffees from the four available, which gives the number of favourable outcomes as:

\[
\binom{3}{0} \binom{4}{2}
\]

Now the number of possible choices Bob has of choosing two sweets from seven is \(\binom{7}{2}\) and thus the probability of Bob selecting no mints is:

\[
\Pr(X = 0) = \frac{\binom{3}{0} \binom{4}{2}}{\binom{7}{2}} = \frac{6}{21} = \frac{2}{7}
\]
Similarly, we can determine:

\[
\Pr(X = 1) = \frac{\binom{3}{1} \binom{4}{1}}{\binom{7}{2}} \quad \text{and} \quad \Pr(X = 2) = \frac{\binom{3}{2} \binom{4}{0}}{\binom{7}{2}}
\]

\[
= \frac{12}{21} \quad \text{and} \quad \frac{3}{21} = \frac{1}{7}
\]

Thus the probability distribution for \(X\) is:

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Pr(X = x))</td>
<td>$\frac{2}{7}$</td>
<td>$\frac{4}{7}$</td>
<td>$\frac{1}{7}$</td>
</tr>
</tbody>
</table>

Note that the probabilities in the table add up to 1. If they did not add to 1 it would be known that an error had been made.

This problem can also easily be completed with a tree diagram.

```
Toffee
\[\frac{3}{6}\]

\[\frac{4}{7}\]

Toffee
\[\frac{1}{7}\]

\[\frac{2}{6}\]

Mint
\[\frac{4}{6}\]

\[\frac{2}{7}\]

Mint
\[\frac{3}{7}\]
```

Therefore \(\Pr(X = 0) = \frac{4}{7} \times \frac{3}{6} = \frac{2}{7}\)

\(\Pr(X = 1) = \frac{4}{7} \times \frac{3}{6} + \frac{3}{7} \times \frac{4}{6} = \frac{2}{7} + \frac{2}{7} = \frac{4}{7}\)

and \(\Pr(X = 2) = \frac{3}{7} \times \frac{2}{6} = \frac{1}{7}\)

This can be considered as a sequence of two trials in which the second is dependent on the first.

Instead of evaluating the probabilities for all the values of \(X\) and listing them in a table, the probability distribution could be given as a rule and, providing the values of \(X\) are specified for which the rule is appropriate, the same information as before is available. In this case the rule is:

\[
\Pr(X = x) = \frac{\binom{3}{x} \binom{4}{2-x}}{\binom{7}{2}}, \quad x = 0, 1, 2
\]

This example is an application of a distribution which is commonly called the hypergeometric distribution.
Example 4

Marine biologists are studying a group of dolphins which live in a small bay. They know there are 12 dolphins in the group, four of which have been caught, tagged and released to mix back into the population. If the researchers return the following week and catch another group of three dolphins, what is the probability that two of these will already be tagged?

Solution

Let \(X \) equal the number of tagged dolphins in the second sample.

We wish to know the probability of selecting two of the four tagged dolphins, and one of the eight non tagged dolphins, when a sample of size 3 is selected from a population of size 12. That is:

\[
\Pr(X = 2) = \binom{4}{2} \binom{8}{1} \binom{12}{3} = \frac{12}{55}
\]

Exercise 13B

1. A company employs 30 salespersons, 12 of whom are men and 18 are women. Five salespersons are to be selected at random to attend an important conference. What is the probability of selecting two men and three women?

2. An electrical component is packaged in boxes of 20. A technician randomly selects three from each box for testing. If there are no faulty components, the whole box is passed. If there are any faulty components, the box is sent back for further inspection. If a box is known to contain four faulty components, what is the probability it will pass?

3. A pond contains seven gold and eight black fish. If three fish are caught at random in a net, find the probability that at least one of them is black.

4. A researcher has caught, tagged and released 10 birds of a particular species into the forest. If there are known to be 25 of this species of bird in the area, what is the probability that another sample of five birds will contain three tagged ones?

5. A tennis instructor has 10 new and 10 used tennis balls. If he selects six balls at random to use in a class, what is the probability that there will be at least two new balls?

6. A jury of six persons was selected from a group of 18 potential jurors, of whom eight were female and 10 male. The jury was supposedly selected at random, but it contained only one female. Do you have any reason to doubt the randomness of the selection? Explain your reasons.
13.3 Sampling with replacement: the binomial distribution

Suppose a fair six-sided die is rolled four times and a random variable X is defined as the number of 3s observed. An approximate probability distribution for this random variable could be found by repeatedly rolling the die four times, and observing the outcomes. On one occasion the four rolls of the die was repeated 100 times and the following results noted:

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of times observed</td>
<td>50</td>
<td>44</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

From this table the probabilities for each outcome could be estimated:

- $\Pr(X = 0) \approx \frac{50}{100} = 0.50$
- $\Pr(X = 1) \approx \frac{40}{100} = 0.44$
- $\Pr(X = 2) \approx \frac{5}{100} = 0.05$
- $\Pr(X = 3) \approx \frac{1}{100} = 0.01$
- $\Pr(X = 4) \approx \frac{0}{100} = 0$

The theoretical probability distribution can be determined in the following way.

One possible outcome of the experiment is $TTNN$, where T represents a 3 and N represents not a 3.

The probability of this particular outcome (that is, in this order) is

$$
\frac{1}{6} \times \frac{1}{6} \times \frac{5}{6} \times \frac{5}{6} = \left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^2
$$

How many different arrangements of $T, T, N,$ and N are there? Listing we find that there are six: $TTNN$, $TNTN$, $TNNT$, $NTTN$, $NTNT$, $NNTT$. The number of arrangements could be found without listing them by recognising that this is equal to $\binom{4}{2}$, the number of ways of placing the two Ts in the four available places.

Thus, the probability of obtaining exactly two 3s when a fair die is tossed four times is:

$$
\Pr(X = 2) = \binom{4}{2} \left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^2
$$

$$
= \frac{25}{216}
$$
Continuing in this way the entire probability distribution can be defined as given in the table. (Note that the probabilities shown do not add to exactly 1 owing to rounding errors.)

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr($X = x$)</td>
<td>0.4822</td>
<td>0.3858</td>
<td>0.1157</td>
<td>0.0154</td>
<td>0.0008</td>
</tr>
</tbody>
</table>

It would be convenient to be able to use a formula to summarise the probability distribution. In this case it is:

$$\text{Pr}(X = x) = \binom{n}{x} \left(\frac{1}{6}\right)^x \left(\frac{5}{6}\right)^{n-x} \quad x = 0, 1, 2, 3, 4$$

This is an example of the **binomial probability distribution**, which has arisen from a binomial experiment. A **binomial experiment** is one that possesses the following properties:

- The experiment consists of a number, n, of identical trials.
- Each trial results in one of two outcomes, which are usually designated as either a **success**, S, or a **failure**, F.
- The probability of success on a single trial, p say, is constant for all trials (and thus the probability of failure on a single trial is $(1 - p)$).
- The trials are independent (so that the outcome on any trial is not affected by the outcome of any previous trial).

The random variable of interest, X, is the number of successes in n trials of a binomial experiment. Thus, X has a binomial distribution and the rule is:

$$\text{Pr}(X = x) = \binom{n}{x} (p)^x (1 - p)^{n-x} \quad x = 0, 1, \ldots, n$$

where

$$\binom{n}{x} = \frac{n!}{x!(n - x)!}$$

Example 5

Rainfall records for the city of Melbourne indicate that, on average, the probability of rain falling on any one day in November is 0.4. Assuming that the occurrence of rain on any day is independent of whether or not rain falls on any other day, find the probability that rain will fall on any three days of a chosen week.

Solution

Since there are only two possible outcomes on each day (rain or no rain), the probability of rain on any day is constant (0.4) regardless of previous outcomes. The situation described is a binomial experiment. In this example occurrence of rain is considered as a success, and so define X as the number of days on which it rains in a given week. Thus X is a binomial random variable with $p = 0.4$ and $n = 7$.
Using a CAS calculator

A CAS calculator can be used to evaluate probabilities for many distributions, including binomial distribution. To access the probability distributions stored in the calculator use the application Stats/List Editor.

Press F5 Distr.

Scroll down to the two references to the binomial distribution:

- **B:Binomial Pdf** is used to determine probabilities for the binomial distribution of the form \(\Pr(X = x) \). Here Pdf refers to probability distribution function.
- **C:Binomial Cdf** is used to determine probabilities for the binomial distribution of the form \(\Pr(X \leq x) \). Here Cdf refers to cumulative distribution function.

Examples of how and when to use each of these functions are given in Example 6.

Example 6

For the situation described in Example 5, use the CAS calculator to find the probability that:

- a rain will fall on any three days of a chosen week
- b rain will fall on no more than three days of a chosen week
- c rain will fall on at least three days of a chosen week.

Solution

- a As shown in Example 5, \(\Pr(X = 3) \) is required, where \(n = 7, \ p = 0.4 \).

 Complete as shown and press ENTER. The result is shown.

Once again it is found that \(\Pr(X = 3) = 0.2903 \).
Here \(\Pr(X \leq 3) \) is required. Use **Binomial Cdf** and complete as shown.

\[
\Pr(X \leq 3) = 0.7102.
\]

This time \(\Pr(X \geq 3) \) is required:

\[
\Pr(X \geq 3) = \Pr(X = 3) + \Pr(X = 4) + \Pr(X = 5) + \Pr(X = 6) + \Pr(X = 7)
\]

The CAS calculator does not have a built-in function to calculate \(\Pr(X \geq x) \), but it can be used to evaluate this probability by recognising that:

\[
\Pr(X \geq 3) = 1 - (\Pr(X = 0) + \Pr(X = 1) + \Pr(X = 2)) = 1 - \Pr(X \leq 2)
\]

Here \(\Pr(X \leq 2) = 0.4199 \)

and hence \(\Pr(X \geq 3) = 1 - 0.4199 = 0.5801 \)

The CAS calculator can also be used to display the binomial probability distribution graphically. This is shown in Example 7.

Example 7

Use the CAS calculator to plot the following probability distribution function

\[
\Pr(X = x) = \binom{n}{x} p^x (1 - p)^{n-x} \quad x = 0, 1, \ldots, n
\]

for \(n = 8 \) and \(p = 0.2 \).

Solution

The distribution is placed in a list by completing the entry for Binomial Pdf without giving a specific value. The numbers 1 to 8 are placed in List 1 and then a scatterplot is created as shown.
Example 8

The probability of winning a prize in a game of chance is 0.25. What is the least number of games that must be played to ensure that the probability of winning at least twice is more than 0.9?

Solution

As the probability of winning each game is the same each time the game is played, this is an example of a binomial distribution, with the probability of success \(p = 0.25 \). We are being asked to find the value of \(n \) such that:

\[
\Pr(X \geq 2) > 0.9
\]

or, equivalently, \(\Pr(X < 2) \leq 0.1 \)

\[
\Pr(X < 2) = \Pr(X = 0) + \Pr(X = 1) = \binom{n}{0} 0.25^0(0.75)^n + \binom{n}{1} 0.25^1(0.75)^{n-1} = (0.75)^n + n0.25(0.75)^{n-1}
\]

It is required to find the value of \(n \) such that:

\[
(0.75)^n + 0.25n(0.75)^{n-1} \leq 0.1
\]

This is not an equation that can be solved algebraically; however, the CAS calculator can be used to solve this equation numerically. Thus, this game must be played at least 15 times to ensure that the probability of winning at least twice is more than 0.9.

Example 9

The probability of an archer obtaining a maximum score from a shot is 0.4. Find the probability that out of five shots the archer obtains the maximum score:

a three times

b three times, given that it is known that she obtains the maximum score at least once.

Solution

a Let \(X \) be the number of maximum scores from 5 shots.

\[
\Pr(X = 3) = \binom{5}{3}(0.4)^3(0.6)^2 = 10 \times 0.064 \times 0.36 = 0.2304
\]

b Since the archer obtains the maximum score at least once, we have a conditional probability. We can use the total probability theorem to find the probability of obtaining three maximum scores given that at least one maximum score is obtained.

\[
\Pr(X = 3 | \text{at least one}) = \frac{\Pr(X = 3) \cdot \Pr(\text{at least one})}{\Pr(\text{at least one})}
\]

Where \(\Pr(\text{at least one}) \) is the probability of obtaining at least one maximum score, which can be calculated as 1 minus the probability of obtaining no maximum scores.

\[
\Pr(X = 0) = \binom{5}{0} 0.4^0(0.6)^5 = 0.0778
\]

So, the conditional probability is:

\[
\Pr(X = 3 | \text{at least one}) = \frac{0.2304}{1 - 0.0778} = 0.2497
\]
Chapter 13 — Discrete Probability Distributions and Simulation

\[b \quad \Pr(X = 3 \mid X > 0) = \frac{\Pr(X = 3)}{\Pr(X > 0)} \]
\[= \frac{0.2304}{1 - \Pr(X = 0)} \]
\[= \frac{0.2304}{1 - 0.6^5} \]
\[= \frac{0.2304}{0.92224} \]
\[= 0.2498 \quad \text{(correct to 4 decimal places)} \]

Exercise 13C

1. For the binomial distribution \(\Pr(X = x) = \binom{6}{x} (0.3)^x (0.7)^{6-x}, x = 0, 1, \ldots, 6 \), find:
 a. \(\Pr(X = 3) \)
 b. \(\Pr(X = 4) \)

2. For the binomial distribution \(\Pr(X = x) = \binom{10}{x} (0.1)^x (0.9)^{10-x}, x = 0, 1, \ldots, 10 \), find:
 a. \(\Pr(X = 2) \)
 b. \(\Pr(X \leq 2) \)

3. A fair die is rolled 60 times. Use your CAS calculator to find the probability of observing:
 a. exactly ten 6s
 b. fewer than ten 6s
 c. at least ten 6s

4. Rainfall records for the city of Melbourne indicate that, on average, the probability of rain falling on any one day in November is 0.35. Assuming that the occurrence of rain on any day is independent of whether or not rain falls on any other day, find the probability that:
 a. rain will fall on the first three days of a given week, but not on the other four
 b. rain will fall on exactly three days of a given week, but not on the other four
 c. rain will fall on at least three days of a given week.

5. A die is rolled seven times and the number of 2s that occur in the seven rolls is noted. Find the probability that:
 a. the first roll is a 2 and the rest are not
 b. exactly one of the seven rolls results in a 2.

6. If the probability of a female child being born is 0.5, use your CAS calculator to find the probability that, if 100 babies are born on a certain day, more than 60 of them will be female.
A breakfast cereal manufacturer places a coupon in every tenth packet of cereal entitling the buyer to a free packet of cereal. Over a period of two months a family purchases five packets of cereal.

a. Find the probability distribution of the number of coupons in the five packets.

b. What is the most probable number of coupons in the five packets?

If the probability of a female child being born is 0.48, find the probability that a family with exactly three children has at least one child of each sex.

An insurance company examines its records and notes that 30% of accident claims are made by drivers aged under 21. If there are 100 accident claims in the next 12 months, use your CAS calculator to determine the probability that 40 or more of them are made by drivers aged under 21.

A restaurant is able to seat 80 customers inside, and many more at outside tables. Generally, 80% of their customers prefer to sit inside. If 100 customers arrive one day, use your CAS calculator to determine the probability that the restaurant will seat inside all those who make this request.

A supermarket has four checkouts. A customer in a hurry decides to leave without making a purchase if all the checkouts are busy. At that time of day the probability of each checkout being free is 0.25. Assuming that whether or not a checkout is busy is independent of any other checkout, calculate the probability that the customer will make a purchase.

An aircraft has four engines. The probability that any one of them will fail on a flight is 0.003. Assuming the four engines operate independently, find the probability that on a particular flight:

a. no engine failure occurs
b. not more than one engine failure occurs
c. all four engines fail

A market researcher wishes to determine if the public has a preference for one of two brands of cheese, brand A or brand B. In order to do this, 15 people are asked to choose which cheese they prefer. If there is actually no difference in preference:

a. What is the probability that 10 or more people would state a preference for brand A?
b. What is the probability that 10 or more people would state a preference for brand A or brand B?

It has been discovered that 4% of the batteries produced at a certain factory are defective. A sample of 10 is drawn randomly from each hour’s production and the number of defective batteries is noted. In what percentage of these hourly samples would there be at least two defective batteries? Explain what doubts you might have if a particular sample contained six defective batteries.
15 An examination consists of 10 multiple-choice questions. Each question has four possible answers. At least five correct answers are required to pass the examination.
 a Suppose a student guesses the answer to each question. What is the probability the student will make:
 i at least three correct guesses?
 ii at least four correct guesses?
 iii at least five correct guesses?
 b How many correct answers do you think are necessary to decide that the student is not guessing each answer? Explain your reasons.

16 An examination consists of 20 multiple-choice questions. Each question has four possible answers. At least 10 correct answers are required to pass the examination. Suppose the student guesses the answer to each question. Use your CAS calculator to determine the probability that the student passes.

Example 7 Plot the probability distribution function \(\Pr(X = x) = \binom{n}{x} p^x (1 - p)^{n-x} \), \(x = 0, 1, \ldots, n \), for \(n = 10 \) and \(p = 0.3 \)

Example 8 Plot the probability distribution function \(\Pr(X = x) = \binom{n}{x} p^x (1 - p)^{n-x} \), \(x = 0, 1, \ldots, n \), for \(n = 15 \) and \(p = 0.6 \).

17 Plot the probability distribution function \(\Pr(X = x) = \binom{n}{x} p^x (1 - p)^{n-x} \), \(x = 0, 1, \ldots, n \), for \(n = 10 \) and \(p = 0.3 \)

18 Plot the probability distribution function \(\Pr(X = x) = \binom{n}{x} p^x (1 - p)^{n-x} \), \(x = 0, 1, \ldots, n \), for \(n = 15 \) and \(p = 0.6 \).

19 What is the least number of times a fair coin should be tossed in order to ensure that:
 a the probability of observing at least one head is more than 0.95?
 b the probability of observing more than one head is more than 0.95?

20 What is the least number of times a fair die should be rolled in order to ensure that:
 a the probability of observing at least one 6 is more than 0.9?
 b the probability of observing more than one 6 is more than 0.9?

21 Geoff has determined that his probability of hitting an ace when serving at tennis is 0.1. What is the least number of balls he must serve to ensure that:
 a the probability of hitting at least one ace is more than 0.8?
 b probability of hitting more than one ace is more than 0.8?

22 The probability of winning in a game of chance is known to be 0.05. What is the least number of times Phillip should play the game in order to ensure that:
 a the probability that he wins at least once is more than 0.90?
 b the probability that he wins at least once is more than 0.95?

Example 9 The probability of a shooter obtaining a maximum score from a shot is 0.7. Find the probability that out of five shots the shooter obtains the maximum score:
 a three times
 b three times, given that it is known that he obtains the maximum score at least once.
24 Each week a security firm transports a large sum of money between two places. The day on which the journey is made is varied at random and, in any week, each of the five days from Monday to Friday is equally likely to be chosen. (In the following, give answers correct to 4 decimal places.)

Calculate the probability that in a period of 10 weeks Friday will be chosen:

a two times
b at least two times
c exactly three times, given it is chosen at least two times

13.4 Solving probability problems using simulation

Simulation is a very powerful and widely used procedure which enables us to find approximate answers to difficult probability questions. It is a technique which imitates the operation of the real-world system being investigated. Some problems are not able to be solved directly and simulation allows a solution to be obtained where otherwise none would be possible. In this section some specific probability problems are looked at which may be solved by using simulation, a valuable and legitimate tool for the statistician.

Example 10

What is the probability that a family of five children will include at least four girls?

Solution

This problem could be simulated by tossing a coin five times, once for each child, using a model based on the following assumptions:

- There is a probability of 0.5 of each child being female.
- The sex of each child is independent of the sex of the other children. That is, the probability of a female child is always 0.5.

Since the probability of a female child is 0.5, then tossing a fair coin is a suitable simulation model. Let a head represent a female child and a tail a male child. A trial consists of tossing the coin five times to represent one complete family of five children and the result of the trial is the number of female children obtained in the trial. To estimate the required probability several trials need to be conducted. How many trials are needed to estimate the probability? As we have already noted in Section 8.2, the more repetitions of an experiment the better the estimate of the probability. Initially about 50 trials could be considered.

An example of the results that might be obtained from 10 trials is given in the table on the next page:
Chapter 13 — Discrete Probability Distributions and Simulation

<table>
<thead>
<tr>
<th>Trial number</th>
<th>Simulation results</th>
<th>Number of heads</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>THHTT</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>HHHTH</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>HHHHT</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>HTTHH</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>HTHHH</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>HTTHH</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>TTHHH</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>HTHHT</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>TTHHH</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>HHTTT</td>
<td>2</td>
</tr>
</tbody>
</table>

Continuing in this way, the following results were obtained for 50 trials:

<table>
<thead>
<tr>
<th>Number of heads</th>
<th>Number of times obtained</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

The results in the table can be used to estimate the required probability. Since at least four heads were obtained in 11 trials, estimate the probability of at least four female children as \(\frac{11}{50} \) or 0.22. Of course, since this probability has been estimated experimentally, repeating the simulations would give a slightly different result, but we would expect to obtain approximately this value most of the time.

Example 10 can be recognised as a situation involving a binomial random variable, with \(n = 5 \) and \(p = 0.5 \). Thus the exact answer to the question ‘What is the probability that a family of five children will include at least four girls?’ is:

\[
\Pr(X \geq 4) = \binom{5}{4}(0.5)^4(0.5)^1 + \binom{5}{5}(0.5)^5(0.5)^0 \\
= 0.1875
\]

This is reasonably close to the answer obtained from the simulation.

In Example 10 simulation was used to provide an estimate of the value of a particular probability. Simulation is also widely used to estimate the values of other quantities which are of interest in a probability problem. We may wish to know the average result, the largest result, the number of trials required to achieve a certain result, and so on. An example of this type of problem is given in Example 11.
Example 11

A pizza store is giving away Batman souvenirs with each pizza bought. There are six different souvenirs available, and a fan decides to continue buying the pizzas until all six are obtained. How many pizzas will need to be bought, on average, to obtain the complete set of souvenirs?

Solution

As there are more than two outcomes of interest, a coin is not a suitable simulation model, but a fair six-sided die could be used. Each of the six different souvenirs is represented by one of the six sides of the die. Rolling the die and observing the outcome is equivalent to buying a pizza and noting which souvenir was obtained. This simulation model is based on the following assumptions:

- The six souvenirs all occur with equal frequency.
- The souvenir obtained with one pizza is independent of the souvenirs obtained with the other pizzas.

A trial would consist of rolling the die until all of the six numbers 1, 2, 3, 4, 5 and 6 have been observed and the result of the trial is the number of rolls necessary to do this. The results of one trial are shown:

5 2 5 2 2 2 3 3 1 2 6 3 5 4

In this instance, 14 pizzas were bought before the whole set was obtained. Of course, we would not expect to buy 14 pizzas every time — this is just the result from one trial. To estimate the required probability we would need to conduct several trials. The following is an example of the results that might be obtained from 50 trials. In each case the number listed represents the number of pizzas that were bought to obtain a complete set of Batman souvenirs:

14 8 12 11 16 8 8 11 15 26 14 20 11 13 35
23 19 14 10 10 20 9 10 14 29 13 7 15 15 22
9 10 14 16 14 17 12 10 24 13 19 27 31 11 9
16 21 22 8 9

To estimate the number of pizzas that need to be bought, the average of the numbers obtained in these simulations is calculated. Thus we estimate that, in order to collect the complete set of souvenirs, it would be necessary to buy approximately

\[
\frac{14 + 8 + 12 + 11 + 16 \cdot \cdot \cdot + 21 + 22 + 8 + 9}{50} \approx 15 \text{ pizzas}
\]

Since Example 11 is not a situation with which we are normally familiar, it is difficult to obtain an exact solution to the problem. Thus simulation has enabled us to find an answer to a question that is far too difficult for us to solve theoretically.
In practice there are situations where coins and dice may not be used. Other methods of simulation need to be adopted to deal with a wide range of situations. Suppose we wished to determine how many pizzas would need to be bought, on average, to obtain a complete set of eight souvenirs. This time we need to generate random numbers from 1 to 8 and a six-sided die would no longer be appropriate, but there are other methods that could be used. We could construct a spinner with eight equal sections marked from 1 to 8, or we could mark eight balls from 1 to 8 and draw them (with replacement) from a bowl, or one of a number of other methods. Often, when we wish to simulate and coins and dice are not appropriate we use random number tables, which will be discussed in the next section.

Exercise 13D

1. A teacher gives her class a test consisting of 10 ‘true or false’ questions. Use simulation to estimate the probability of a student who guesses the answer to every question, and gets at least seven correct. Use your knowledge of the binomial distribution to find an exact answer to this question.

2. Because of overpopulation, some countries are trying to limit their birth rate. One country decides to implement a ‘one son’ policy, in which a family is allowed to continue having children until their first son is born. Use simulation to answer the following questions:
 a. What is the ratio of girls to boys in this country?
 b. What is the average family size in this country?

13.5 Random number tables

To extend the number of applications which can be simulated, a more flexible method of generating data is needed. In practice this is often done by using random number tables, which can be adapted to almost any situation. Random number tables consist of the digits 0 to 9 and are constructed so that each of the digits is equally likely to appear in any position in the table. You could generate your own random number tables by drawing balls numbered 0 to 9 from a bag, replacing each ball every time so that the probability is unchanged for each draw.

An examination of a set of random number tables shows that they consist of a list of digits with no apparent pattern or order. They are usually in blocks of five digits with spaces between every fifth row to allow ease of movement around the table.

To use the tables select a starting point at random, by dropping a pencil on the tables for instance, and then proceed around the table in a specific direction. This direction can be vertical, horizontal, diagonal or whatever is chosen, but the method of movement must be consistent during the particular simulation session.
<table>
<thead>
<tr>
<th>Random number table</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 65 41</td>
</tr>
<tr>
<td>5 57 85</td>
</tr>
<tr>
<td>7 29 24</td>
</tr>
<tr>
<td>6 01 65</td>
</tr>
<tr>
<td>8 83 62</td>
</tr>
<tr>
<td>9 95 43</td>
</tr>
<tr>
<td>1 14 55</td>
</tr>
<tr>
<td>7 56 32</td>
</tr>
<tr>
<td>9 97 72</td>
</tr>
<tr>
<td>5 51 66</td>
</tr>
<tr>
<td>7 00 41</td>
</tr>
<tr>
<td>0 97 93</td>
</tr>
<tr>
<td>9 32 08</td>
</tr>
<tr>
<td>8 78 61</td>
</tr>
<tr>
<td>8 87 58</td>
</tr>
<tr>
<td>3 80 07</td>
</tr>
<tr>
<td>5 85 98</td>
</tr>
<tr>
<td>2 19 03</td>
</tr>
<tr>
<td>9 09 25</td>
</tr>
<tr>
<td>0 45 73</td>
</tr>
<tr>
<td>2 15 09</td>
</tr>
<tr>
<td>2 95 68</td>
</tr>
<tr>
<td>2 48 03</td>
</tr>
<tr>
<td>3 68 74</td>
</tr>
<tr>
<td>6 55 40</td>
</tr>
<tr>
<td>8 29 37</td>
</tr>
<tr>
<td>3 15 86</td>
</tr>
<tr>
<td>9 47 08</td>
</tr>
<tr>
<td>5 76 24</td>
</tr>
<tr>
<td>6 91 32</td>
</tr>
<tr>
<td>6 02 84</td>
</tr>
<tr>
<td>6 60 40</td>
</tr>
<tr>
<td>1 14 50</td>
</tr>
<tr>
<td>1 82 71</td>
</tr>
<tr>
<td>4 99 09</td>
</tr>
<tr>
<td>2 70 84</td>
</tr>
<tr>
<td>3 59 38</td>
</tr>
<tr>
<td>1 26 94</td>
</tr>
<tr>
<td>3 17 96</td>
</tr>
<tr>
<td>3 09 94</td>
</tr>
</tbody>
</table>
Example 12

There are five movie star cards available in a certain brand of bubble gum. Sally only wants the one with her favourite star on it and she decides to continue buying packets of bubble gum until she gets the one she wants. How many packets of bubble gum will she need to buy, on average, to do this?

Solution

Before deciding on a simulation model we need to clearly state our assumptions:

- The five cards all occur with equal frequency.
- The card obtained with one bubble gum packet is independent of each of the cards in the other packets.

First consider the possible outcomes. There are five cards which could generate five equally likely outcomes, each one represented by a different card. There are 10 different digits in the random number tables allowing the designation of two digits for each outcome. Let us use 0 and 1 to represent obtaining the card we want (a success), and 2, 3, 4, 5, 6, 7, 8 and 9 to represent obtaining any one of the other four cards (a failure).

\[
\begin{array}{c c c c c c c}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
\text{success} & & & & & & & & & \\
\text{failure} & & & & & & & & &
\end{array}
\]

Suppose the section of the random number tables in use looks like this:

5 5 7 8 5	3 7 6 5 2	3 9 7 4 3	4 8 6 9 9
7 2 9 2 4	2 5 6 8 8	7 6 7 1 7	9 0 4 9 4
6 0 1 6 5	3 4 6 6 8	0 4 9 1 5	2 2 2 5 6
8 8 3 6 2	7 3 9 7 4	8 8 7 1 5	6 1 9 7 3

Proceeding through the tables keeping the same pattern we record:

Trial 1: 5 6 8 8 7 6 7 1

As soon as a 0 or 1 is reached the trial is complete and the total number of packets bought is recorded, which in this case is eight. We then continue with the same pattern from the next digit for Trial 2 and so on.

Trial 2: 7 9 0 Number of packets = 3
Trial 3: 4 9 4 6 0 Number of packets = 5
Trial 4: 1 Number of packets = 1
Trial 5: 6 5 3 4 6 6 8 0 Number of packets = 8

This process could continue until we had the results from about 50 trials.
A possible set of results might look like this:

\[
\begin{array}{cccccccc}
8 & 3 & 5 & 1 & 8 & 3 & 4 & 2 & 5 & 2 \\
4 & 7 & 2 & 9 & 2 & 3 & 6 & 4 & 4 & 6 \\
4 & 5 & 12 & 10 & 1 & 2 & 12 & 2 & 3 & 1 \\
5 & 5 & 6 & 1 & 2 & 3 & 4 & 2 & 1 & 6 \\
4 & 1 & 2 & 5 & 2 & 1 & 4 & 3 & 4 & 16 \\
\end{array}
\]

From these simulation results it can be estimated that, on average, Sally would need to buy about 4.3 packets of bubble gum in order to obtain the card she wants.

Random number tables may be used in many situations. If we wish to consider a problem involving a probability of success of 0.4, we can use the digits 0, 1, 2 and 3 to indicate success, and 4, 5, 6, 7, 8 and 9 to indicate failure. If the probability is 0.36 we can use pairs of digits from the tables, where 00—35 indicates success, and 36—99 failure, and so on.

Exercise 13E

1. How would you use random number tables to simulate the outcomes of each spinner?

2. Use simulation to estimate the number of pizzas we would need to buy if the number of Batman souvenirs described in Example 11 was extended to 10.

3. Use the information contained in Example 12 and simulation to estimate the number of bubble gum packets Sally would need to buy if:
 - a she wishes to collect two cards in the set (that is, two different cards)
 - b she wishes to have two copies of her favourite card (that is, two of the same card).

4. A teacher gives the class a test consisting of 10 multiple-choice questions, each with five alternatives. Use simulation to estimate the probability of a student who guesses the answer to every question getting at least seven correct. Use your knowledge of the binomial distribution to find an exact answer to this question.

5. An infectious disease has a one-day infection period and after that the person is immune. Six people live on an otherwise deserted island. One person catches the disease and randomly visits one other person for help during the infectious period. The second person is infected and visits another person at random during the next day (their infection period). The process continues, with one visit per day, until an infectious person visits an immune person and the disease dies out.
 - a Use simulation to estimate the average number of people who will be infected before the disease dies out.
 - b Use random number tables to extend this problem to different size populations.
Chapter summary

- A **discrete** random variable X is one which can assume only a countable number of values. Often these values are whole numbers, but not necessarily.
- The **probability distribution** of X, $p(x) = \Pr(X = x)$ is a function that assigns probabilities to each value of X. It can be represented by a formula, a table or a graph, and must give a probability $p(x)$ for every value that X can take.

 For any discrete probability function the following must be true:

 a. The minimum value of $p(x)$ is zero, and the maximum value is 1, for every value of X. That is, $0 \leq p(x) \leq 1$ for all x.

 b. The sum of all values of $p(x)$ must be exactly 1.

- The **binomial distribution** arises when counting the number of successes in a sample chosen from an infinite population, or from a finite population with replacement. In either case, the probability, p, of a success on a single trial remains constant for all trials. If the experiment consists of a number, n, of identical trials, and the random variable of interest, X, is the number of successes in n trials, then:

 $$\Pr(X = x) = \binom{n}{x} p^x (1-p)^{n-x}, \quad x = 0, 1, \ldots, n$$

 where

 $$\binom{n}{x} = \frac{n!}{x!(n-x)!}$$

- Simulation is a simple and legitimate method for finding solutions to problems when an exact solution is difficult, or impossible, to find.
- In order to use simulation to solve a problem a clear statement of the problem and the underlying assumptions must be made.
- A model must be selected to generate outcomes for a simulation. Possible choices for physical simulation models are coins, dice and spinners. Random number tables, calculators and computers may also be used.
- Each trial should be defined and repeated several times (at least 50).
- The results from all the trials should be recorded and summarised appropriately to provide an answer to a problem.

Multiple-choice questions

1. Consider the following table which represents the probability distribution of the variable X.

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Pr(X = x)$</td>
<td>k</td>
<td>$2k$</td>
<td>$3k$</td>
<td>$2k$</td>
<td>k</td>
</tr>
</tbody>
</table>

 For the table to represent a probability function, the value of k is

 A. $\frac{1}{10}$
 B. $\frac{1}{9}$
 C. $\frac{1}{5}$
 D. $\frac{1}{7}$
 E. $\frac{1}{8}$
2 Suppose that the random variable X has the probability distribution given in the table:

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr($X = x$)</td>
<td>0.05</td>
<td>0.23</td>
<td>0.18</td>
<td>0.33</td>
<td>0.14</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Then Pr($X \geq 5$) is equal to
A 0.24 B 0.10 C 0.90 D 0.76 E 0.14

3 Suppose that there are two apples and three oranges in a bag. A piece of fruit is drawn from the bag. If the fruit is an apple, it is not replaced and a second piece of fruit is drawn and the process is repeated until an orange is chosen. If X is the number of pieces of fruit drawn before an orange is chosen then the possible values for X are
A \{0\} B \{0, 1\} C \{0, 1, 2\} D \{0, 1, 2, 3\} E \{1, 2, 3\}

4 Which one of the following random variables has a binomial distribution?
A the number of tails observed when a fair coin is tossed 10 times
B the number of times a player rolls a die before a 6 is observed
C the number of SMS messages a students sends in a day
D the number of people at the AFL Grand Final
E the number of accidents which occur per day at a busy intersection

5 Suppose that X is the number of male children born into a family. If the distribution of X is binomial, with probability of success of 0.48, the probability that a family with six children will have exactly three male children is
A 0.48×3 B $(0.48)^3$ C $(0.48)^6$ D $\binom{6}{3}(0.48)^3$ E $\binom{6}{3}(0.48)^3(0.52)^3$

6 The probability that a student will be left-handed is known to be 0.23. If nine students are selected at random for the softball team then the probability that at least one of these students is left-handed is given by
A $(0.23)^9$ B $\binom{9}{1}(0.23)^1(0.77)^8$ C $1 - \binom{9}{0}(0.23)^0(0.77)^9$ D $1 - \binom{9}{0}(0.23)^9(0.77)^0 - \binom{9}{1}(0.23)^1(0.77)^8$ E $(0.23)^9 + \binom{9}{1}(0.23)^1(0.77)^8$

7 Which one of the following graphs best represents the shape of a binomial probability distribution of the random variable X with 10 independent trials and probability of success 0.2?

- A
- B
- C
- D
- E
8 If the probability that a mathematics student in a certain state is male is 0.56, and if 60 students are chosen at random from that state, then the probability that at least 30 of those chosen are male is closest to

A 0.066 B 0.210 C 0.790 D 0.857 E 0.143

Questions 9 and 10 refer to the following information:
Tom is choosing lucky numbers from a box. The probability of winning a prize with any one of the lucky numbers is 0.1, and whether or not a prize is won on a single draw is independent of any draw.

9 Suppose Tom draws 10 lucky numbers. The probability he wins three or four times is

A 0.0574 B 0.0686 C 0.0112 D 0.0702 E 0.9984

10 Suppose Tom plays a sequence of \(n\) games. If the probability of winning at least one prize is more than 0.90, then the smallest value \(n\) can take is closest to

A 1 B 2 C 15 D 21 E 22

Short-answer questions (technology-free)

1 For the probability distribution

\[
\begin{array}{c|ccccc}
 x & 0 & 1 & 2 & 3 & 4 \\
 \hline
 \Pr(X = x) & 0.12 & 0.25 & 0.43 & 0.12 & 0.08 \\
\end{array}
\]

calculate:

a \(\Pr(X \leq 3) \)

b \(\Pr(X \geq 2) \)

c \(\Pr(1 \leq X \leq 3) \)

2 A box contains 100 cards. Twenty-five cards are numbered 1, 28 are numbered 2, 30 are numbered 3 and 17 are numbered 4. One card will be drawn from the box and its number \(X\) observed. Give the probability distribution of \(X\).

3 From the six marbles numbered as shown, two marbles will be drawn without replacement.

\[
\begin{array}{cccccc}
1 & 1 & 1 & 1 & 2 & 2 \\
\end{array}
\]

Let \(X\) denote the sum of the numbers on the selected marbles. List the possible values of \(X\) and determine the probability distribution.

4 Two of the integers \(\{1, 2, 3, 6, 7, 9\}\) are chosen at random. (An integer can be chosen twice.) Let \(X\) denote the sum of the two integers.

a List all choices and the corresponding values of \(X\).

b List the distinct values of \(X\).

c Obtain the probability distribution of \(X\).

5 For a binomial distribution with \(n = 4\) and \(p = 0.25\), find the probability of:

a three or more successes

b at most three successes

c two or more failures
6 Twenty-five per cent of trees in a forest have severe leaf damage from air pollution. If three trees are selected at random, find the probability that:
 a two of the selected trees have severe leaf damage
 b at least one has severe leaf damage.

7 In a large batch of eggs, one in three is found to be bad. What is the probability that of four eggs there will be:
 a no bad egg? b exactly one bad egg? c more than one bad egg?

8 In a particular village the probability of rain falling on any given day is \(\frac{1}{4} \).
 Calculate the probability that in a particular week rain will fall on:
 a exactly three days b less than three days c four or more days

9 Previous experience indicates that, of the students entering a particular diploma course, \(p\% \) will successfully complete it. One year, 15 students commence the course. Calculate, in terms of \(p \), the probability that:
 a all 15 students successfully complete the course
 b only one student fails
 c no more than two students fail.

10 The probability of winning a particular game is \(\frac{3}{5} \). (Assume all games are independent.)
 a Find the probability of winning at least one game when the game is played three times.
 b Given that, when the game is played \(m \) times, the probability of winning exactly two games is three times the probability of winning exactly one game, find the value of \(m \).

Extended-response questions

1 For a particular random experiment \(\Pr(A|B) = 0.6 \), \(\Pr(A|B') = 0.1 \) and \(\Pr(B) = 0.4 \).
 The random variable \(X \) takes the value 4 if both \(A \) and \(B \) occur, 3 if only \(A \) occurs, 2 if only \(B \) occurs, and 1 if neither \(A \) nor \(B \) occur.
 a Specify the probability distribution of \(X \). b Find \(\Pr(X \geq 2) \).

2 The number of times a paper boy hits the front step of a particular house in a street in a randomly selected week is given by the random variable \(X \), which can take values 0, 1, 2, 3, 4, 5, 6, 7. The probability distribution for \(X \) is given in the table.

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Pr(X = x))</td>
<td>0</td>
<td>(k)</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0</td>
</tr>
</tbody>
</table>

 a i Find the value of \(k \).
 ii Find the probability that he hits the front step more than three times.
 iii Find the probability that he hits the front step more than four times, given that he hits the front step more than three times.
It is found that there are 10 houses on the round for which the paper boy’s accuracy is given exactly by the distribution above. Therefore the probability of hitting the front step of any one of these 10 houses three or four times a week is 0.4.

i Find the probability (correct to 4 decimal places) that out of the 10 houses he hits the front step of exactly four particular houses three or four times a week.

ii Find the probability (correct to 4 decimal places) that out of 10 houses he hits the front step any four houses three or four times a week.

3 A bag contains three blue cards and two white cards that are identical in all respects except colour. Two cards are drawn at random and without replacement from the bag.

a Find the probability that the two cards are of different colour.

If the cards are of a different colour, two fair coins are tossed and the number of heads recorded. If the cards are of the same colour, the two fair coins are each tossed twice and the number of heads recorded.

Let X be the number of heads recorded.

b Find:

i $\Pr(X = 0)$

ii $\Pr(X = 2)$

The events A and B are defined as follows:

A occurs if the two cards drawn are of the same colour, B occurs if $X \geq 2$.

c Find:

i $\Pr(A \cup B)$

ii $\Pr(B|A)$

4 An examination consists of 20 multiple-choice questions. Each question has five possible answers. At least 10 correct answers are required to pass the examination. Suppose the student guesses the answer to each question.

a Use your CAS calculator to determine the probability that the student passes.

b Given that the student has passed, what is the probability that they scored at least 80% on the test?

5 Jolanta is playing a game of chance. She is told that the probability of winning at least once in every five games is 0.99968. Assuming that the probability of winning each game is constant, what is her probability of winning in any one game?

6 A five-letter ‘word’ is formed by selecting letters from the word BINOMIAL. Each letter is replaced after selection so that it may be chosen more than once. Find the probability that the ‘word’ contains at least one vowel.

7 Suppose that a telephone salesperson has a probability of 0.05 of making a sale on any phone call.

a What is the probability that they will make at least one sale in the next 10 calls?

b How many calls should the salesperson make in order to ensure that the probability of making at least one sale is more than 90%?
8 Suppose that, in flight, aeroplane engines fail with probability \(q \), independently of each other, and a plane will complete the flight successfully if at least half of its engines do not fail.
 a Find, in terms of \(q \), the probability that a two-engine plane completes the flight successfully.
 b Find, in terms of \(q \), the probability that a four-engine plane completes the flight successfully.
 c For what values of \(q \) is a two-engine plane to be preferred to a four-engine one?

9 Use simulation to estimate the probability that in a group of 10 people at least two of them will have their birthday in the same month. (Assume that each month is equally likely for any person.)

10 In general 45% of people have type O blood. Assuming that donors arrive independently and randomly at the blood bank, use simulation to answer the following questions.
 a If 10 donors came in one day, what is the probability of at least four having type O blood?
 b On a certain day, the blood bank needs four donors with type O blood. How many donors, on average, should they have to see in order to obtain exactly four with type O blood?

11 Sixteen players are entered in a tennis tournament. Use simulation to estimate how many matches a player will play, on average:
 a if the player has a 50% chance of winning each match
 b if the player has a 70% chance of winning each match.

12 Consider a finals series of games in which the top four teams play off as follows:

 Game 1: Team A vs Team B
 Game 2: Team C vs Team D
 Game 3: Winner of game 2 plays loser of game 1
 Game 4: Winner of game 3 plays winner of game 1

 The winner of game 4 is then the winner of the series.
 a Assuming all four teams are equally likely to win any game, use simulation to model the series.
 b Use the results of the simulation to estimate the probability that each of the four teams wins the series.